FC6809 | NTROL-C

STANDARD LI BRARY
REFERENCE MANUAL

(FLEX)

The contents of this manual have been carefully reviewed and are

believed to be entirely correct. However, Introl Corp. assumes no
liability for inaccuracies.

The software described in this manual is proprietary and is
furni shed under a license agreenent fromlintrol Corp. The software
and supporting docunentation may be wused and/or copied only in
accordance with said |license agreenent.

INTROL-C is a registered trademark of Introl Corp.

FLEX and Uni Fl ex are trademarks of Technical Systens Consultants, |nc.
09 is a trademark of M croware Systens Corp.

UNIl X is a trademark of Bell Laboratories

Introl Corp.
647 W Virginia St.
M | wvaukee, W 53204 USA

tel. (414) 276-2937

Copyright 1983 Introl Corp.
Al Rights Reserved

FC6809 STANDARD LI BRARY

This manual describes each of the standard Ilibrary routines
supported by the FC6809 Introl-C Standard Library. The FC6809
Standard Library is wusable with the Introl "fld Loader for

producing programs that are conpatible with, and executabl e under,
the Flex operating system Note that Introl-C uses systemcall nanes
which may differ fromthose used by your operating system Those
system calls which perform a function which is analogous to a
recogni zed UNI X system call have been given the corresponding UN X
name rather than the nane used by the particul ar operating system
The library functions appear in al phabetical order in this-nmanual.

| MPORTANT NOTE: The nmmjority of functions contained in the
Standard Library have been pre-assigned a nodul e "cl ass nunber"”
of zero (0). Several "non-zero" class Standard Library nodules
are also included for user convenience, however, and are
identified in the Appendix at the end of this Standard Library
Manual . In general, these non-zero class nodules are alternate
fornms of identically naned class zero nodules that exist in the
library, nodified to fit specific programm ng applications.

The following is a list of the functions included in this manual.

FUNCTI ON DESCRI PTI ON PAGE
abs - integer absolute val ue 1.1
al | oc - allocate nmenory 2.1
at of - convert string to float 3.1
at oi - convert string to integer 4.1
at ol - convert string to long 5.1
cprep - prepare environnent for C program 6.1
cstart - runtinme preparation routine 7.1
ecvt - float to string conversion 8.1
execl - execute a program 9.1
exit - exit a programwith file cleanup 10.
_exit - exit a programwi thout file cleanup 11.
_extend - extend fl oat 12.
fcl ose - close file 13.
fcvt - float to string conversion 14.
fgets - read file into string 15.
_filespec - Build file specification 16.
_fns - Call to FLEX FMS entry point 17.
f open - open a file 18.
fprintf - formatted out put conversion 19.
fputs - wite astring to a file 20.
free - free nmenory 21.
f scanf - formatted input conversion 22.
getc - get the next character froma file 23.
get char - get a character fromthe standard i nput 24,
_getchr - Call FLEX CGETCHR entry point. 25.
gets - read input into string 26.

RPRRPRRPRPRPRPRRRRRREPRRRERER

ndex
sal pha
sdigit
sl ower
sspace
supper
t oa
ongj np
mal | oc
max

nmn
nodf
novmem
printf
put c
put char
_putchr
puterr
puts
reverse
rewi nd
ri ndex
shrk
scanf
_set ext
setjnp
sprintf
sscanf
strcat
strcnp
strcpy
strlen
st rncat
strncnp
st rncpy
strsave
t ol owner
t oupper
ul di v
ul ncd
ul mul
_unext
unget c
unget char
unl i nk

find first occurrence of character
test for al pha character

test for digit

test for |ower case

test for white space

test for upper case

convert integer to ascii string
non-| ocal goto

al | ocate nenory

return the nmaxi mum of two val ues
return the mni mumof two val ues
return fractional part of float

copy a block of menory fromone-location to another

formatted output conversion
wite a character to a file

wite a character to the standard out put

Call FLEX PUTCHR entry point.

wite a char to the standard error output (STDERR)

wite a string to standard out put
reverse a string in place

reset specified file to beginning
find | ast occurrence of character
al | ocate nenory

formatted i nput conversion

Cal | FLEX SETEXT entry poi nt

non-| ocal goto

formatted output conversion
formatted string conversion

copy string

conpare strings |exicographically
copy string

return string length

copy string

conpare strings |exicographically
copy string

save string in nmenory

convert to | ower case

convert to upper case

unsi gned | ong integer divide

unsi gned | ong nodul o operation
unsi gned long nultiply

unextend fl oat

push character back on input stream
push character back on standard i nput stream

delete file

27.
28.
29.
30.
31.

33

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.

RPRRPRRPRRPRRPRRPRRPRRRPRRPRPRRPRPRRPRRPRRRPRRPRPRREPRPREPRERRRPRRREPRRPRRRERRERRERRERRRERRRRR

NAME
abs - integer absolute val ue

SYNOPSI S
i nt abs(i)
i nt i;

DESCRI PTI ON
abs returns the absolute value of its integer operand.

DI AGNCSTI CS
SEE ALSO

NOTES

NAME
alloc - allocate nenory

SYNOPSI S
char *al | oc(size)
i nt si ze;
DESCRI PTI ON
alloc wll attenpt to allocate a block of nenory whose size is

given by the argunment. If it is successful it returns a pointer
to that nenory otherwi se it returns NULL.

DI AGNCSTI CS
Returns NULL if the menory could not be all ocated.
SEE ALSO
free(), sbrk()
NOTES
Alloc is an obsolete name for malloc(). It sinmply calls

mal | oc() and returns.

NAME
atof - convert string to float

SYNOPSI S
fl oat atof (cptr)
char *cptr;
DESCRI PTI ON

The atof function converts a string into a float which is then
used as the return value of the function. The string should be
null term nated although atof wll stop reading the string as
soon as an illegal character is reached. After ignoring
precedi ng bl anks the atof routine wll convert as much of the
string as confornms to nornmal floating point constant format to
a floating point nunber. It will stop at the first character
which is inconsistent with that format. If no floating point
constant is found a 0 is returned.

A floating point constant consists of an integer part, a
deci mal point, a fractional part, and an exponential part. The
integer and fractional parts may each consist of a string of
one or nore digits. The exponential part consists of an 'e' or
"E', followed by an optionally signed integer exponent. Either
the integer or the fractional part (but not both) nmay be
m ssing; either the decinmal point or the exponential part (but
not both) may be nissing

DI AGNCSTI CS

SEE ALSO
atoi (), atol ()

NOTES
Presently it is pernmitted to have spaces between the 'e' or 'E
and the first character of the integer representing the
exponent .

NAME

atoi - convert string to integer
SYNOPSI S
i nt atoi (ptr)
char *ptr;
DESCRI PTI ON
Atoi's argunent is a pointer to char which is assuned to point
to a null termnated string which contai ns the ASC

representation of some integer nunber. The atoi function
converts a string into an int which is the return value. The
string should be null ternmnated although atoi wll stop
reading the string as soon as an illegal character is reached

After ignoring preceding blanks the atoi routine will convert
as much of the string as conforms to normal integer constant
format to an integer nunber. It wll stop at the first
character which is inconsistent with that format. If no integer
constant is found a 0 is returned.

The integer constant format consists of an optional sign,
followed by one or nore digits. There should be no spaces
i nterspersed within the nunber.

DI AGNCSTI CS

SEE ALSO
atof (), atol ()

NOTES

NAME

atol - convert string to |ong,
SYNOPSI S

| ong atol (cptr)

char *cptr;
DESCRI PTI ON

The atol function converts a string into a long which is the
return value. The string should be null term nated although
atol will stop reading the string as soon as an illegal
character is reached. After ignoring preceding blanks the atol
routine will convert as much of the string as confornms to
normal long integer constant format to a long integer. It wll
stop at the first character which is inconsistent wth that
format. If no long integer constant is found a 0 is returned.

The long integer constant format consists of an optional sign,
followed by one or nore digits. There should be no spaces
i nterspersed within the nunber.

DI AGNCSTI CS

SEE ALSO
atof (), atoi()

NOTES

NAME
cprep - prepare environnent for C program

SYNOPSI S
i nt cprep(argc, argv, eext)
i nt ar gc;
char **argv;
char *eext ;

DESCRI PTI ON
Cprep first prepares the environment for the user C program and
then call s "main", the wusual entry-point to a user program
Cprep is wusually referenced only from "cstart". The user
program is not expected to make any explicit reference to this
routine.

DI AGNCSTI CS

SEE ALSO
cstart

NOTES

The result of an explicit reference to cprep i s undefined.

NAME
cstart - runtinme preparation routine

SYNCPSI S

DESCRI PTI ON

Cstart is a runtine preparation routine which is normally the
first routine executed by an Introl-C program Its only
function is to set up the environment enough to allow the
function "cprep" to be <called. Cprep is a function which
produces the runtine environment which is-expected by the user

program Cstart is included automatically by the linker. It is
NOT expected that a wuser program wll reference cstart
explicitly via a function call

DI AGNCSTI CS

SEE ALSO
cprep()

NOTES
The result of an explicit reference to cstart is undefined.

NAME
ecvt - float to string conversion

SYNOPSI S
char *ecvt (arg, ndigits, decpt, si gn)
fl oat ar g;
i nt ndigits;
i nt *decpt, *si gn;
DESCRI PTI ON

This is a formatting routine wused by printf for formatting
floating point nunbers in the e fornat.

Ecvt returns a pointer to a string which contains asci

characters representing a floating point nunber. The first
argunent is converted to a string whose length is indicated by
the second argunment. The third argunent points to a variable in
which the routine will wite the |ocation of the deci mal point
relative to the start of the string (negative nunbers indicate
that the decimal point is to the left of the first character of
the string). The variable pointed to by the fourth argunment is

set nonzero if the float is negative otherwise it is set to
zero.

The string is witten in a static data area local to ecvt and
is overwitten with the next call.

If the argunent passed to ecvt is a legal floating point nunber
the string will consist of a series of ascii digits term nated
by a null. If the argunent is out of the |legal range for floats
(as per the IEEE standard) the string will contain "NaN' (Not a
Nunber). If the argunent is either greater than the maxi mum or
less than the minimumallowed for a float the characters "inf"
(infinity) will be placed in the string (the fourth argument is
set to indicate positive or negative infinity). The string
itself contains neither a mnus sign nor a decinmal point nor a
base ten exponent.

DI AGNCSTI CS

SEE ALSO
fevt(), itoa()

NOTES

NAME

execl - execute a program
SYNOPSI S
i nt execl (cnd, arg0, argl,...,0)

char cmd, *arg0, *argl,..... :

DESCRI PTI ON

Execl causes the present program to cease execution and a new
programto execute. The nane of the file to be executed nust be
contained in a string pointed to by the first argunent. The
addi tional argunments are assuned to be pointers to nul
term nated strings. These pointers wll be passed to the
program to be executed if they appeared as paraneters on a
command call line. The last argument MJST be a zero. The new
process is given the argunents which follow the first argunent
in the execl call. The second argunent of the execl call is the
FIRST argunent passed to the programto be executed (by
convention referred to as argv(0). The last argument in the
execl call nust always be a zero

DI AGNCSTI CS

Thi s functi on NEVER returns.

SEE ALSO

NOTES

The sumtotal of lengths of the argunent strings (including a
space to be placed between each argunent) nust not exceed the
length of a FLEX line buffer, which is 128 bytes | ong.

NAME
exit - exit a programwith file cleanup

SYNOPSI S
i nt exit(stat)
i nt stat;
DESCRI PTI ON

Exit aborts a C programand returns to the operating system
The status value is returned to the operating system Exit also
flushes any open file buffers and closes all open files before

exiting.
DI AGNCSTI CS
SEE ALSO

_exit()
NOTES

10.1

NAME
_exit - exit a programwi thout file cleanup

SYNOPSI S
i nt _exit(stat)
i nt stat;
DESCRI PTI ON

_exit aborts a C programand returns to the operating system
The status value is returned to the operating system The _exit
routine does not explicitly flush the file buffers.

DI AGNCSTI CS

SEE ALSO
exit()

NOTES

11.1

NAME
_extend - extend fl oat

SYNOPSI S
i nt _extend(f, ef)
fl oat f:
struct extflt
{
char si gn;
i nt exp;
| ong nmanti ssa
o oxef;
DESCRI PTI ON

_extend extends a floating point nunber (its first argunent)

and stores the result in the structure pointed to by the second
argunent. The first elenent of the structure contains the sign

bit of the nunber, the second elenent contains the unbi ased

exponent, and the thirs elenent contains the mantissa.

DI AGNCSTI CS

SEE ALSO
_unext ()

NOTES

12.1

NANVE
fclose - close file

SYNOPSI S
#i nclude "stdio.h"
i nt fcl ose(fp)
FI LE *fp;

DESCRI PTI ON
Fclose wll close the file indicated by its argunment. The
argument nust be a file pointer which was previously returned
from an fopen wunless it is STDIN, STDOUT, or STDERR If the
file has been opened for witing, fclose will automatically
flush the remaining contents of the buffer.

DI AGNOSTI CS
fclose will return ERROR if the file could not be closed. The
external variable "errno" will contain the error code which was

returned by the operating system.

SEE ALSO
fgets(), fopen(), fprintf(), fputs(), fscanf(), getc()

NOTES

13.1

NAME
fcvt - float to string conversion

SYNOPSI S
char *fcvt(arg, ndigits, decpt, sign)
float arg;

int ndigits;
int *decpt, *sign

DESCRI PTI ON
This is a formatting routine wused by printf for formatting
floating point nunbers in the f format. It is simlar to the
"ecvt" routine except that the correct digit will be rounded as

demanded by Fortran F-format for the nunber of digits indicated
by the second argunent

Fcvt returns a pointer to a string which contains asci
characters representing a floating point nunber. The first
argunent is converted to a string whose length is indicated by
the second argunent. The third argunent points to a variable in
which the routine will wite the |ocation of the deci mal point
relative to the start of the string (negative nunbers indicate
that the decimal point is to the left of the first character of
the string). The variable pointed to by the fourth argunent is
set nonzero if the float is negative; otherwise it is set to
zero.

The string is witten in a static data area local to fcvt and
is overwitten with the next call

If the argunent passed to fcvt is a legal floating point nunber

the string will consist of a series of ascii digits term nated
by a null. If the argunent is out of the |legal range for floats
(as per the |EEE standard) the string will contain "NaN (Not a
Nunber). If the argunent is either greater than the nmaxi mum or
less than the minimumallowed for a float the characters "inf"
(infinity) will be placed in the string (the fourth argunent is
set to indicate positive or negative infinity). The string

itself contains neither a mnus sign nor a decinmal point nor a
base ten exponent.

DI AGNOSTI CS

SEE ALSO
ecvt (), itoa()

NOTES

14.1

NAME
fgets - read file into string

SYNOPSI S
#i ncl ude "stdio. h"
i nt fgets (s,n,fp)
char *S
int n;
FI LE *fp;

DESCRI PTI ON
Fgets will read aline of upto n characters fromthe file
pointed to by its third argunent into the area pointed to by
its first argunent. |Its third argument nust be a file pointer
previously returned by an fopen call. Fgets returns a pointer

to the start of the line read or NULL if for sonme reason no
line could be read. The function reads the nunber of characters
indicated by its second argument or until an end of line is
encountered, whichever comes first. The trailing newline IS
included in the line read

DI AGNOSTI CS
fgets will return NULL if the file could not be read from this
is usually interpreted as an End O File.

SEE ALSO
fclose(), fflush(), fopen(), fprintf(), fputs(), fscanf(),
getc(), gets()

NOTES
If thereis atrailing newine character read fromthe file
fgets will include it in the string whereas gets will not.

15.1

NAME
_filespec - Build file specification

SYNOPSI S
*include "stdio.h"
i nt _filespec(n,fp,ext)
char *n;
FI LE *f p;
char ext;
DESCRI PTI ON
The _filespec function builds a file specification in the fcp

pointed to by the second argunent. The first argunent points to
a file nane string that may contain a drive specifier and an
extension. If no drive is given in the nanme, the system working
disk is assuned. If no extension is given in the name, the
value of the third argument is used ina call to the FLEX
routine SETEXT to set the default extension. (see "The FLEX
Advanced Programmers Q@uide" for nore details on the ext
paraneter.)

DI AGNCSTI CS
Returns ERROR if a valid file specification could not be nade.

SEE ALSO
NOTES

This routine is used internally by sone of the file routines
and is not guaranteed to be supported in the future.

16.1

NAME
_fms - Call to FLEX FMS entry point

SYNOPSI S
#i ncl ude "stdi o. h"
i nt _fms(fp,c)
FI LE *f p;
char C

DESCRI PTI ON

This is a short assenbly |anguage routine that allows a C
program to call the FLEX FMS entry point. The desired function
should be placed in fp->f.function (see the flex.h header
file). The val ue of the second paranmeter is placed in the A
accumul ator before the call to the FMS entry point. On return,
fnms returns an integer representing the value of the A
Accumul at or or ERROR

DI AGNOSTI CS
Returns ERROR if FLEX detected an error in the FMS cal | .

SEE ALSO
NOTES

This routine is used internally by some of the file routines
and is not guaranteed to be supported in the future.

17.1

NAME
fopen - open a file

SYNOPSI S
#i ncl ude "stdio.h"
FI LE *f open(nane, node)
char *nane, *node

DESCRI PTI ON
Fopen will open the file whose nane is pointed to by its first
argunent with the attributes indicated in the string pointed to
by its second argunent. It returns a value of type pointer to
FI LE whi ch nust be used as an argunent on subsequent references
to the file.

The options with which the file is to be opened are specified
as ASClI| characters in the node string (whose pointer is passed
as the second paraneter). One of the characters in this string
indicates the nbde for which the file wll be opened. The
appropriate nodes are:

r - read: File is opened for read access
w- wite: File is opened for wite access

If neither of these characters appears in the string the file
is opened for read access. The result of placing nore than one
of these characters in the string is undefined

In addition to one of the preceding characters a b may appear
in the string. The 'b' option indicates that the file is a
binary file while the absence of a 'b' indicates that the file
shoul d be opened as a text file.

DI AGNCSTI CS
Fopen will return ERRORif the file could not be opened and the
external wvariable "errno" will contain any error code returned

by the system

SEE ALSO
fclose(), fgets(), fprintf(), fputs(), fscanf (), getc()

NOTES

The current version of fopen returns ERROR when it fails to
open a file rather than the nore common return value of NULL.

18.1

NAME

fprintf - formatted output conversion

SYNOPSI S
#i ncl ude "stdio. h"
i nt fprintf(streamcontrol [,arg])

FI LE *stream
char *control;

DESCRI PTI ON

Fprintf is nearly identical to printf except that here the
output file specificationis explicitly given as the first
ar gunent . Al output is sent to the file pointed to by the
first argunment. The paraneters to fprintf consist of pointer
to FILE, followed by a pointer to a null term nated string,
followed by zero or nore argurments. fprintf formats and wites
the argunents following the control string using the contro

string to direct formatting and conversion. The control string
may contain normal characters (which are sinply copied to the
output file) and conversion specifications which control the
witing of the argunents. Each conversion provides information
used to format its correspondi ng argunent follow ng the contro

string. Conversion specifications begin with a percent
character (%, perhaps followed by sone options and terninated
by a conversion character. Al the options are, of course

optional but those that are included nust appear in the
speci fied order. The |l egal options (in the order they nust
appear) are as follows:

Dash (-): indicates that if the nunber to be witten is shorter
than the specified field length that it should be left
justified. If this optionis omtted the nunber will be
right justified.

Zero (0): indicates that if the nunber to be witten is shorter
than the specified field length that it should be padded
with zeros to fill the field length. |If this optionis
omitted the field will be padded w th bl anks.

Digit string: indicates the mininum field width. The argunent
will be witten in a field at least this wide. This field
may be replaced with a star (*) which will cause the field

width to be taken fromthe next correspondi ng argunent (of
type integer) in the argunent list.

Period (.): separates the field wdth from the next digit
string.

Digit string: indicates the precision. For a float the
preci si on is the nunber of digits to be witten to the
right of the decimal point. For a string the precision is
the maxi mum nunber of characters which wll be witten
This field may be replaced with a star (*) which will
cause the field width to be taken from the next

19.1

correspondi ng argunment (assuned

argunent |i st

to be an integer) in the

Long (I): (letter ell) indicates that the corresponding
argunent is to be witten as a long rather than an int.

The valid conversion characters and their neanings are as

fol | ows:

d The argunent is assuned to be of

in decimal notation.

o] The argunent is witten in octal

type int and is witten

(wi thout |eading 0).

X Argunent is witten in hexadecimal (w thout |eading).

u The argunent is assuned to be
deci nal notati on.

unsigned and witten in

c The argument is witten as a character.

s The argunent is assunmed to

be a pointer to a nul

termnated string. Characters are copied fromthe contro

string to the output string

until a null character is
reached or until the nunber of

characters given by the

precision are copied. The termnating null is not copied.

e The argunent is assuned to be a float and witten out in a

deci mal not ati on of

t he foll ow ng form

[-d. dddddde[+|]-]dd That is a negative sign if the nunber
is negative, a single digit, followed by a decinal point,

followed by several digits, followed by an

e', foll owed

by a sign, followed by two digits.

f The argument is assunmed to be a

float and witten out in a

decimal notation of the following form [-]ddd.dddd where
the length of the string of digits follow ng the decinal

point is given by the precision.
g Prints in either e or f format;

| f a character which is nei t her
character is found while scanning
the character following the percent
and no conversion specification is

percent sign one wites it twce(%4.

DI AGNCSTI CS
Fprintf returns ERROR if it fails.

SEE ALSO
printf(),sprintf()

19.2

whi chever is shorter.

an option nor a conversion
a conversion specification
sign (% is simoly witten
assuned. Thus to wite a

NAME
fputs - wite a string to a file

SYNOPSI S
#i ncl ude "stdio.h"
i nt fputs(s, fp)
char *S;
FI LE *f p;
DESCRI PTI ON

Fputs copies the string pointed to by the first argunent to the
file indicated by the second argunment. The second ar gunent
of type pointer to FILE and should have been returned by a cal
to fopen unless it is STDOUT or STDERR

DI AGNCSTI CS
Returns ERROR if an error occurred while attenpting to wite
the string.
SEE al so
put s()
NOTES

20.1

NAME
free - free nmenory

SYNOPSI S
char *free(bl ock)
char *bl ock;

DESCRI PTI ON
Free will attenpt to free a block of nenory indicated by its
ar gurent . The only valid argument for free is a pointer
previously returned by an alloc call. This routine should only

be used to free a block that has been allocated via alloc. The
result of freeing the sane block of nenory nobre than once or
attenpting to use, as an argunent, a pointer which was not
returned by an alloc call is undefined (bad things happen).

DI AGNCSTI CS

SEE ALSO
alloc(), sbrk()

NOTES

21.1

NAME

fscanf - formatted input conversion

SYNOPSI S
#i ncl ude "stdio. h"
i nt fscanf(file,control [,pointerl]...)
FI LE *file;
char *cont rol
DESCR PTI ON

Fscanf is nearly identical to scanf except that the input file
specification is explicitly stated; the input is taken fromthe
file pointed to by the first argunment. The paraneters to fscanf
consist of a pointer to file, followed by a pointer to a nul
termnated string (the control string), followed by zero or
nor e argunents of type pointer. Fscanf reads groups of
characters from the input file pointed to by the first
argument, interprets themaccording to the control string, and
wites the results into the argunents pointed to by their
correspondi ng argunent pointers. The control string may contain
bl anks, tabs, and new ines which natch optional white space in
the input; it may contain ordinary characters which nmust match
the input string exactly character per character; and it may
contain conversi on specifications used to control the
interpretation of t he i nput stream Each conver si on
specification provides information used to translate a segnent
of the input streaminto a value which may then be placed into
an argunent pointed to by its corresponding pointer in the
argunent |ist.

Conver si on specifications begin with a percent character
per haps fol | owed by sone options, and termnated by a
conversion character. Al the options are, of course, optiona
but those that are included nust appear in the specified order
The legal options (in the order they nmnust appear) are:

St ar (*): indicates that this conversion specification has no
corresponding pointer in the ar gurrent list. Thi s
effectively skips a value in the input stream

Digit string: indicates the maximumfield w dth; the maxi mum
nunber of characters which this conversion specification
will cause to be read fromthe input stream

Long (1): (letter ell) indicates that the correspondi ng pointer
is pointing to a long rather than an int. Thi s has no
ef fect when preceding an e or f.

The valid conversion characters and their neanings are as
fol | ows:

d A decimal integer is expected in the input string. |Its
correspondi ng pointer is assuned to be of type *int.

22.1

0 An octal integer is expected in the input string. Its
correspondi ng pointer is assumed to be of type *int.

X A hexadecinmal integer is expected in the input string. Its
correspondi ng pointer is assumed to be of type lint.

h A decimal integer is expected in the input string. |Its
correspondi ng pointer is assumed to be of type short.

u An unsi gned decimal integer is expected in the input
string. 1ts corresponding pointer is assuned to be of type
*unsi gned.

c The very next character is read fromthe input string
(even if it's a blank). Its corresponding pointer is
assuned to be of type char

S A string is expect ed in the input string. Its
corresponding pointer is assuned to be of type *char. It
should point to a space |large enough to hold the input
string plus an added null. Characters are read, starting
with the next nonblank character, wuntil the nunber of
characters given in the precision is reached or until a
bl ank, tab, or newine is reached.

e (sane as f)

f A floating point nunber is expected in the input string
Its corresponding pointer is assuned to be of type *float.

DI AGNCSTI CS
The return value of this function is the nunber of paranmeters
that were matched (read in fromthe input Iine) or EOF (-1).

SEE ALSO
scanf (), sscanf()

NOTES
Exactly one line of input is consuned for each call to fscanf.
Thus fscanf will not fetch a newline even though there are
still conversion specifications left to process nor wll it
save any input left fromthe preceding line for the next cal
to fscanf.

A hexadeci mal nunber may not be preceded by a Ox.

Any character wthin a conversion specifier whichis not a
| egal conversion specifier option or conversion character will
be ignored along with the preceding percent sign and any
characters inbetween. Thus there is no way to match a '% on
the input |ine.

22.2

NAME
getc - get the next character froma file

SYNOPSI S
#i ncl ude "stdio. h"
i nt getc(fp)
FI LE fp;

DESCRI PTI ON
Getc returns the next character fromthe file indicated by its
ar gunent . Its argunent is of type pointer to FILE and should
have been previously returned froman fopen call unless it is
STDI N.

DI AGNCSTI CS
Getc returns ECF (-1) upon reading end of file or on error.

SEE ALSO
get char ()

NOTES

Notice the return value of getc is an integer not a character
This is so that getc can return ECF (-1) on end of file.

23.1

NAME
getchar - get a character fromthe standard i nput

SYNOPSI S
i nt get char ()
DESCRI PTI ON
Getchar is identical to getc(stdin). It returns the next

character fromthe standard input.

DI AGNCSTI CS
Getchar returns ECF (-1) upon reading end of file or on error
SEE ALSO
getc()
NOTES
Notice the return value of getchar is an integer not a
character. This is so that getchar can return an ECF (-1) on

end of file.

24.1

NAME
_getchr - Call FLEX GETCHR entry point.

SYNOPSI S
#i ncl ude "stdi o. h"
i nt _getchr()
DESCRI PTI ON

This function returns the value obtained by a call to the FLEX
entry point GETCHR (get consol e character).

DI AGNCSTI CS
SEE ALSO
NOTES

This routine is used internally by some of the file routines
and is not guaranteed to be supported in the future.

25.1

NAME
gets - read input into string

SYNOPSI S
i nt gets(s)
char *S;

DESCRI PTI ON
Gets will read aline fromthe standard input (STDIN) into
the area pointed to by its argunent. Gets returns a pointer
to the start of the line read, or NULL if for sone reason no
line could be read. The function reads until an end of line

is encountered. The trailing newwine is NOI included in the
line read (conpare this with fgets(s,n,stdin)).

DI AGNOSTI CS
Gets will return NULL on end of file and error.,

SEE ALSO
Fcl ose(), fflush(), fgets(), fopen(), fprintf(), fputs(),
fscanf(), getc().

NOTES

Gets wll not include any trailing newine character in the
string whereas fgets wll.

26.1

NANVE
index - find first occurrence of character

SYNOPSI S
i nt i ndex(s, c)
char *S:
char c;
DESCRI PTI ON

I ndex searches the string whose pointer is passed as its first
argument and returns a pointer to the first occurrence of the
character specified by the second argunent. A zero is returned
if the character does not appear in the string.

DI AGNCSTI CS

SEE ALSO
ri ndex()

NOTES

27.1

NAME
i sal pha - test for al pha character

SYNOPSI S
i nt i sal pha(ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argunent is an al pha character
(a through z or A through Z); otherw se returns false (zero).

DI AGNCSTI CS

SEE ALSO
isdigit(), islower(), isspace(), isupper()

NOTES

28.1

NAME
isdigit - test for digit

SYNOPSI S
i nt i sdigit(ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argument is a digit (0 through
9); otherwi se returns false (zero).

DI AGNCSTI CS

SEE ALSO
i sal pha(), islower(), isspace(), isupper()

NOTES

29.1

NANVE
islower - test for |ower case

SYNOPSI S
i nt i sl ower (ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argument is a | ower case al pha
character (a through z); otherwi se returns false (zero).

DI AGNCSTI CS

SEE ALSO
i sal pha(), isdigit(), isspace(), isupper()

NOTES

30.1

NAME
i sspace - test for white space

SYNOPSI S
i nt i sspace(ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argunent is a space, tab, or
new i ne character; otherw se returns false (zero).

DI AGNCSTI CS

SEE ALSO
i sal pha(), isdigit(), islower(), isupper()

NOTES

31.1

NAME
i supper - test for upper case

SYNOPSI S
i nt i supper (ch)
char ch;

DESCRI PTI ON

Returns true (non zero) if its argunment is an upper case al pha
character (A through Z); otherw se returns false (zero).

DI AGNCSTI CS

SEE ALSO
i sal pha(), isdigit(), islower(), isspace()

NOTES

32.1

NAME

itoa - convert integer to ascii string
SYNOPSI S
i nt itoa(n,s)
i nt n;
char *S
DESCRI PTI ON
Itoa converts its first argunent into a null term nated asci
string which is stored at the |ocation pointed to by its second
ar gunent . If the integer is negative the string wll be

preceded by a mnus sign. The second argunent should point to
an area |arge enough to contain the resultant string which may
contain a sign, up to 5 digits, and a NULL term nation
character.

DI AGNCSTI CS

SEE ALSO
fevt(), ecvt()

NOTES

33.1

NAME
I ongjmp - non-local goto

SYNOPSI S
#i ncl ude "stdio.h"
i nt | ongj mp(envp, n)
struct jnp_buf *envp
i nt n;

DESCRI PTI ON

Longj mp works in conjunction with setjnp to provide the ability
to junp outside of a function. Conpare this to a nornmal goto
for which the destination nust be in the sanme function as the
goto statenent. Setjnp is used to mark a location as a
destination (that is save a copy of the current environment)
for later use by the longjnp routine. The argunent to setjnp is
a pointer to structure which will hold the current environnment.
A pointer to this structure is wused as an argunent to | ongjnp.
Longjnmp sinply restores the environnment which was saved by the
setjmp call. The effect is that execution continues at the
| ocation where the environment was saved (inside the setjnp
call). The appearance is that of a return from setjnp.

To mark a location one makes a call to setjnp. This will
initialize the contents of the structure whose pointer was
passed as an argunent. From this call, setjnmp will return the
value 0. Later, when control is returned here froma | ongjnp,
the return value wll be decided by the second argunment of the
| ongj np call

Now a junp can be nmmde to this location by nmaking a call to
longjnp, wusing a pointer to the sanme structure that was
initialized by setjnmp as the first argunment and an integer as
the second argunent. The second argunment, will be used as the
return value when control is transferred to the setjnp
envi r onnent

The destination of a longjunp must be in a function which has
not itself returned inbetween the call to setjnp and the cal
to | ongjnp. That is, the destination of a |ongjnp nust be
within a currently active function

DI AGNCSTI CS

SEE ALSO

NOTES

34.1

NAME
mal | oc al | ocate nenory

SYNOPSI S
char *mal | oc(si ze)
i nt si ze;
DESCRI PTI ON
malloc will attenpt to allocate a block of nenmory whose size is
given by the argument. If it is successful it returns a pointer

to that nenory, otherwise it returns NULL.

DI AGNCSTI CS
Returns NULL if the nenory could not be allocated.

SEE ALSO
free(), sbrk()

NOTES

35.1

NANVE
max - return the nmaxi num of two val ues

SYNOPSI S
i nt max(a, b)
i nt a, b;

DESCRI PTI ON
Max returns the greater of its two argunents.

DI AGNCSTI CS

SEE ALSO
m n()

NOTES

36.1

NANVE
mn - return the mninum of two val ues

SYNOPSI S
i nt m n(a, b)
i nt a, b;

DESCRI PTI ON
Mn returns the lesser of its two argunents.

DI AGNCSTI CS

SEE ALSO
max()

NOTES

37.1

NAME
nodf - return fractional part of float

SYNOPSI S
fl oat modf (fp, fint)
f | oat fp;

fl oat *fint;

DESCRI PTI ON
Modf takes a floating point nunmber as its first argunent and
returns its fractional part. Its nonfractional part is witten
to the location pointed to by the second argunent.
This routine is used by ecvt and fcvt.

DI AGNCSTI CS

SEE ALSO

NOTES

38.1

NAME
novnem

SYNOPSI S
i nt
char
unsi gned

DESCRI PTI ON
Movnem

fromthe | ocation

poi nt ed
reflect

- copy a block of nmenory fromone |ocation to another

novimem (fromto, | ength)
*from *to;
| engt h;

copi es the nunber of bytes given by the third argunent
pointed to by first argunment to the | ocation

to by the second argunent. The new copy wll exactly
the original as it existed before the call even if the

two blocks of nenory overlap (in that case, of course, the

ori gi nal
DI AGNCSTI CS
SEE ALSO

NOTES

will be partially overwitten).

39.1

NAME

printf - formatted output conversion

SYNOPSI S
i nt printf(control [,arg]...)
char *cont rol

DESCRI PTI ON

Printf is nearly identical to fprintf excect that there is no
output file specification explicitly stated; the result is
witten to stdout. The paraneters to printf consist of a
pointer to a null termnated string followed by zero or nore
ar gunent s. Printf formats and wites the argunents follow ng
t he control string wusing the control string to direct
formatting and conversion. The control string may contain
normal characters (which are sinmply copied to the output file)
and conversion specifications which control the witing of the

ar gunment s. Each conversion specification provides information
used to format its correspondi ng argunent follow ng the contro

string. Conversion specifications begin with a percent
character (%, perhaps followed by sone options and terninated
by a conversion character. Al the options are, of course

optional but those that are included nust appear in the
speci fied order. The |l egal options (in the order they nust

appear) are as follows:

Dash (-): indicates that if the nunber to be witten is shorter
than the specified field length, it should be left
justified. if this option is omtted the nunber will be
right justified.

Zero (0): indicates that if the nunber to be witten is shorter
than the specified field length, it should be padded with
zeros to fill the field length. If this optionis omtted
the field will be padded with bl anks.

Digit string: indicates the mnimumfield width. The argunent
will be witten in a field at least this wide. This field
may be replaced with a star (*) which will cause the field
width to be taken from the next corresponding argunent
(assunmed to be an integer) in the argunent |ist.

Period (.): separates the field width from the next digit
string.

Digit string: indicates the precision. For a float the
precision is the nunber of digits to be witten to the
right of the decimal point. For a string the precision is

t he maxi mum nunber of characters which will be witten.
This field may be replaced with a star (*) which wll
cause t he field width to be taken fromthe next

correspondi ng argunent (assurmed to be an integer) in the
argunment |ist.

40.1

Long (I): (letter ell) indicates that the corresponding
argunent is to be witten as a long rather than an int.

The valid conversion characters and their neanings are as
fol | ows:

d The argument is assuned to be of type int and is witten
in decinmal notation.

o] The argunent is witten in octal (w thout |eading 0).
X Argunment is witten in hexadeci mal (w thout |eading Ox).

u The argument is assuned to be wunsigned and witten in
deci nal notati on.

c The argument is witten as a character.

s The argunent is assumed to be a pointer to a null
termnated string. Characters are copied fromthe control

string to the output string wuntil a null character is
reached or until the nunber of characters given by the
precision are copied. The terminating null is not copied.

e The argunment is assuned to be a float and witten out in a
deci mal not ati on of t he fol |l owi ng form
[-]1d.dddddde[+| -]dd That is a negative sign if the nunber
is negative, a single digit, followed by a decimal point,
followed by several digits, followed by an 'e', followed
by a sign, followed by two digits.

f The argunent is assuned to be a float and witten out in a
decimal notation of the following form [-]ddd.dddd where
the length of the string of digits follow ng the decinal
point is given by the precision.

g Prints in either e or f format; whichever is shorter.

| f a character which is neither an option nor a conversion
character is found while scanning a conversion specification
the character followi ng the percent sign (% is sinply witten
and no conversion specification is assumed. Thus to print out a
percent sign one wites it twice (%9. A space is NOT a | egal
opti on.

DI AGNOSTI CS
Printf returns ERRORif it fails.

SEE ALSO
fprintf(), sprintf()

NOTES

40. 2

NAME
putc - wite a character to a file

SYNOPSI S
#i ncl ude "stdio.h"
i nt putc(c, fp)
char c
FI LE *fp;
DESCRI PTI ON

Putc sends the character given as its first argunent to the
file whose file pointer is given as its second argunent. The
file pointer nmust have been previously returned froman fopen
call unless it is STDOUT or STDERR

DI AGNCSTI CS
Putc returns ERROR (-1) if an error occurs during the wite
process.

SEE ALSO

NOTES

41.1

NAME

put char - wite a character to the standard out put
SYNOPSI S

i nt put char (c)

char C
DESCRI PTI ON

Put char sends the character given as its argunent to STDOUT. A
call of the formputchar(c) is identical to putc(c,stdout).

DI AGNCSTI CS
Putchar returns ERROR (-1) if an error occurs during the wite

process.

SEE ALSO
putc()

NOTES

42.1

NAME
putchr - Call FLEX PUTCHR entry point.

SYNOPSI S
#i ncl ude "Istdio. h"
i nt _putchr(c)
char c
DESCRI PTI ON

This function perforns a call to the FLEX entry point PUTCHR to
per f or m consol e out put.

DI AGNCSTI CS
SEE ALSO
NOTES

This routine is used internally by some of the file routines
and is not guaranteed to be supported in the future.

43.1

NAME
puterr - wite a char to the standard error output (STDERR)

SYNOPSI S
i nt puterr(c)
char c;
DESCRI PTI ON

Puterr sends the character given as its argunent to STDERR A
call of the formputerr(c) is identical to putc(c,stderr).

DI AGNCSTI CS
Puterr returns ERROR (-1) if an error occurs during the wite
process.

SEE ALSO

NOTES
STDERR i s always directed to the termnal.

44.1

NAME
puts - wite a string to standard out put

SYNOPSI S
i nt put s(s)
char *s;
DESCRI PTI ON

Puts copies the string pointed to by the argument to the
standard output. The effect is the sane as fputs(s, stdout).

DI AGNCSTI CS
Returns ERROR if an error occurred while attenpting to wite
the string.

SEE ALSO
fputs()

NOTES

Does NOT append a new ine (contrary to sonme inplenentations).

45.1

NANMVE
reverse - reverse a string in place

SYNOPSI S
i nt reverse(s)
char *S:
DESCRI PTI ON
Reverses the order of the elements of a string pointed to by
the argunent. If the string the argument pointed to was
"abcdef" before the call, it would be "fedcba" after the call.
DI AGNCSTI CS
SEE ALSO
NOTES

46. 1

NAME
rewind - reset specified file to beginning

SYNOPSI S

#i ncl ude "stdio. h"

i nt rew nd(fp)

FI LE *f p;
DESCRI PTI ON

Rewi nd resets the file back to the beginning.
DI AGNCSTI CS

Returns ERROR for inproper file specification.
SEE ALSO
NOTES

47.1

NANVE
rindex - find | ast occurrence of character

SYNOPSI S
i nt rindex(s, c)
char *S
char c;
DESCRI PTI ON

Ri ndex searches the string whose pointer is passed as its first
argument and returns a pointer to the |last occurrence of the
character specified by the second argunment. A zero is returned
if the character does not appear in the string.

DI AGNCSTI CS

SEE ALSO
i ndex()

NOTES

48.1

NAME
sbrk - allocate nenory

SYNOPSI S
char *sbrk(size)
i nt si ze;
DESCRI PTI ON
Sbrk will attenpt to allocate a block of menory whose size is

given by the argunent. If it is successful it returns a pointer
to that nenory; otherwise it returns ERROR

Sbrk is simlar to alloc except that there is no way to return
the nenory to the system

DI AGNCSTI CS
Returns ERROR (-1) if the nmenory coul d not be allocated.

SEE ALSO
alloc(), brk(), free()

NOTES

49.1

NAME

scanf - formatted i nput conversion

SYNCPSI S

int scanf(control [,pointerl] ...)
char *cont rol

DESCRI PTI ON

Scanf is nearly identical to fscanf except that there is no
input file specification explicitly stated; the input is taken
from stdin. The paraneters to scanf consist of a pointer to a
null termnated string (the control string) followed by zero or
nor e argunent s of type pointer. Scanf reads groups of
characters fromthe standard input, interprets them according
to the control string and wites the results into the argunents
pointed to by their corresponding argunent pointers. The
control string may contain blanks, tabs, and newines which
match optional white space in the input; it may contain
ordinary characters which nust match the input string exactly
character per character; and it nmmy contain conversion
specifications wused to control the interpretation of the input
stream Each conversion specification provides information used
to translate a segnent of the input streaminto a value which
may then be placed into an argunent pointed to by its
correspondi ng pointer in the argunent list. Conversion
specifications begin wth a percent character (%, perhaps
followed by sone options, and terminated by a conversion
character. Al the options are, of course, optional but those
that are included nmust appear in the specified order.

The legal options (in the order they nmust appear) are as
fol | ows:

Star (*): indicates that this conversion specification has no
cor respondi ng poi nt er in t he argunent list. This
effectively skips a value in the input stream

Digit string: indicates the maximumfield wdth; the maxi mum
nunber of characters which this conversion specification
will cause to be read off the input stream

Long (letter ell) indicates that the correspondi ng pointer
is pointingto a long rather than an int. This has no
ef fect when preceding an e or f.

The valid conversion characters and their neanings are as
fol | ows:

d A decimal integer is expected in the input string. Its
correspondi ng pointer is assuned to be of type *int.

o] An octal integer is expected in the input string. Its
correspondi ng pointer is assuned to be of type *int.

50.1

X A hexadecimal integer is expected in the inout string. Its
correspondi ng pointer is assumed to be of type lint.

h A decimal integer is expected in the input string. Its
correspondi ng pointer is assumed to be of type short.

u An unsigned integer is expected in the input string. |Its
correspondi ng pointer is assunmed to be of type *unsigned

c The very next character is read from the input string
(even if it's a blank). Its corresponding pointer is
assuned to be of type *char

S A string is expect ed in t he input string. Its
corresponding pointer is assumed to be of type *char. It
should point to a space |arge enough to hold the input
string plus an added nul|. Characters are read, starting
with the next nonblank character, wuntil the nunber of
characters given in the precision is reached or until a
bl ank, tab, or newline is reached.

e (sane as f)

f A floating point nunber is expected in the input string
Its corresponding pointer is assuned to be of type *float.

The return value of this function is the nunber of paraneters
that were matched (read in off the input line) or ECF.

DI AGNCSTI CS

SEE ALSO
fscanf (), sscanf()

NOTES
Exactly one line of input is consuned for each call to scanf.
Thus scanf will not fetch a new line even though there are
still conversion specifications left to process nor will it
save any input left fromthe preceding line for the next cal
to scanf. |If, for exanple, one makes a <call to scanf with a
control string which indicates 3 argunents are expected while
only 2 appear on the input line scanf will NOT continue to read

lines. Fscanf will sinply return with a value of 2. Likewise if
the input line had contained 4 argunents only 3 would have been
read while the fourth woul d be discarded

A hexadeci mal nunber may not be preceded by a Ox.

Any character wthin a conversion specifier which is not a
| egal conversion specifier option or conversion character will
be ignored along with the preceding percent sign and any
characters in between. Thus there is no way to match a '% on
the input |ine.

50. 2

NAME
_setext - Call FLEX SETEXT entry point

SYNOPSI S
#i ncl ude "stdi o. h"
i nt _setext(fp, ext)
FI LE fp;
char ext;
DESCRI PTI ON

The _setext function perfornms a call to the FLEX routine SETEXT
to set a default file nane extension into the given file
control bl ock.

DI AGNCSTI CS

SEE ALSO

NOTES

This routine is used internally by some of the file routines
and is not guaranteed to be supported in the future.

51.1

NAME

setjmp - non-local goto

SYNOPSI S
#i ncl ude
i nt setjnmp (envp)

j mp_buf *envp

DESCRI PTI ON
Setjnmp works in conjunction with longjnp to provide the ability
to junp outside of a function. Conpare this to a normal goto
for which the destination nmust be in the sane function as the
goto statenent. Setjmp is wused to mark a location as a

destination (that is save a copy of the current environnent)
for later use by the longjnp routine. The argunent to setjnp is

a pointer to structure which will hold the current environnment.
A pointer to this structure is used as one of the argunents to
| ongj mp. Longjnmp sinply restores the environment which was
saved by the setjnp call. The effect is that execution

continues at the |location where the environnent was saved
(inside the setjnp call). The appearance is that of a return
from setj np.

To mark a location one nmakes a call to setjnp. This wll
initialize the contents of the structure whose pointer was
passed as an argunent. From this call setjmp will return the
value 0. Later, when control is returned here froma | ongjnp,
the return value will be decided by the second argunment of the

I ongjnp call. (see |ongjnp)

Now a junp can be nmade to this location by neking a call to
longjnp using a pointer to the sane structure that was
initialized by setjnmp as the first argunment and an integer as
the second argunent. The second argunent will be used as the
return value when control is transferred to the setjnp
envi ronnent .

The destination of a longjnp nust be in a function which has
not itself returned inbetween the call to setjnp and the cal

to | ongj np.

DI AGNCSTI CS

SEE ALSO

| ongj np()

NOTES

52.1

NAME
sprintf - formatted output conver sion

SYNOPSI S
i nt sprintf(string,control [,argl]...)
char *string, *control

DESCRI PTI ON

Sprintf is nearly identical to printf except that rather than
witing to the standard output (stdout), the result is placed
in anull termnated string pointed to by the first argument
(which is assumed to be of type pointer to character). The
paranmeters to sprintf consist of a pointer to char, followed by
a pointer to a null termnated string, followed by zero or nore
argunents. Sprintf formats the argunents followi ng the contro

string, wusing the control string to direct formatting and
conversion. It places the result in the string pointed to by
the first argunment which nust be long enough to accept it. The
control string may contain normal characters (which are sinply
copied to the output string) and conversion specifications
which control the cooying of the argunents. Each conversion
speci fication provi des i nformation used to format its
correspondi ng argunent followi ng the control string. Conversion
specifications begin with a percent character, (%, perhaps
followed by sone options, and terminated by a conversion
character. Al the options are, of course, optional but those
that are included nust appear in the specified order. The |ega

options (in the order they nust appear) are as follows:

Dash (-): indicates that, if the nunber to be copied is shorter
than the specified field length, it should be left
justified. if this option is onmtted the nunber will be
right justified.

Zero (0): indicates that, if the nunber to be copied is shorter
than the specified field length, it should be padded with
zeros to fill th field length. If this optionis omtted
the field will be padded with bl anks.

Digit string: indicates the mininum field width. The argunent
will be copied into a field at least this wide. This field
may be replaced with a star (*) which will cause the field
width to be taken from the next corresponding argunent
(assuned an integer) in the argunent |ist.

Period (.): separates the field wdth from the next digit
string.

Digit string: indicates the precision. For a float the
precision is the nunber of digits to be witten to the
right of the decimal point. For a string the precision is
the maxi mum nunber of characters which will be witten.
This field my be replaced with a star (*) which wll
cause the field width to be taken from the next

53.1

correspondi ng argunent (assuned to be an integer) in the
argunment |ist

Long (I): (letter ell) indicates that its corresponding
argunment is to be witten as a long rather than an int.

The valid conversion characters and their neanings are as
fol | ows:

d The argunent is assuned to be of type int and is witten
in decimal notation.

o] The argunent is witten in octal (w thout |eading 0).
X Argunent is witten in hexadeci mal (without |eading Ox).
u The argument is assuned to be unsigned and witten in

deci mal notati on.

c The argunent is witten as a character.

s The argunment is assuned to be a pointer to a nul
termnated string. Characters are copied fromthe control
string to the output string until a null character is
reached or until the nunber of characters given by the
precision are copied. The terminating null is not copied.

e The argument is assunmed to be a float and witten out in a

decimal notation of the following form
[-]1d.ddddddde[+| -]dd That is a negative sign if the nunber
is negative, a single digit, followd by a decinmal point,
followed by several digits, followed by an'
by a sign, followed by two digits.

e', foll owed

f The argunment is assumed to be a float and witten out in a
decimal notation of the followi ng form [-]ddd.dddd where
the Ilength of the string of digits follow ng the deci nal
point is given by the precision.

g Prints in either e or f format; whichever is shorter.
if a character which is neither an option nor a conversion
character is found while scanni ng a conversi on specification
the character followi ng the percent sign (% is sinply witten
and no conversion specification is assuned. Thus to wite a
percent sign one wites it twi ce (%4

DI AGNCSTI CS

SEE ALSO
printf(), fprintf()

NOTES

53.2

NAME

sscanf - formatted string conversion

SYNOPSI S
i nt sscanf (string,control [,pointerl] ...)
char *string, *control
DESCRI PTI ON
Sscanf is nearly identical to fscanf except that its input is

taken fromthe string pointed to by the first argunent rather
than a file. The paraneters to sscanf consist of a pointer to
char, followed by a pointer to a null termnated string (the
control string), followed by zero or nore argunents of type
poi nter. Sscanf reads groups of characters from the input
string pointed to by the first argunment, interprets them
according to the control string, and wites the results into
the argunents pointed to by their corresponding argunent
pointers. The control string may contain blanks, tabs, and
new i nes which match optional white space in the input string
it may contain ordinary characters which nmust match the input
string exactly character per character; and it may contain
conversi on specifications used to control the interpretation of
t he input string. Each conversion specification provides
information wused to translate a segnent of the input string
into a value which may then be placed into an argunent pointed
to by its corresponding pointer in the argument |ist.

Conversion specifications begin with a percent character, (%,
per haps followed by sone options, and termnated by a
conversion character. Al the options are, of course, optiona

but those that are included nust appear in the specified order.

The legal options (in the order they nust appear) are as
fol | ows:

St ar (*) indicates that this conversion specification has no
correspondi ng poi nt er in the ar gunent list. This
effectively skips a value in the input string

Digit string: indicates the maxinmnumfield wdth; the maxi mum
nunber of characters which this conversion specification
will cause to be read off the input string.

Long (1): (letter ell) indicates that the correspondi ng pointer
is pointing to a long rather than an int. This has no
ef fect when preceding an e or f.

The valid conversion characters and their neanings are as
fol | ows:

d A decimal integer is expected in the input string. Its
correspondi ng pointer is assumed to be of type lint.

54.1

The

An octal integer is expected in the input string. |Its
correspondi ng pointer is assuned to be of type *int.

A hexadecimal integer is expected in the input string. Its
correspondi ng pointer is assuned to be of type *int.

A decimal integer is expected in the input string. |Its
corresponding pointer is assuned to be of type *short.

An unsigned decinmal integer is expected in the input
string. Its corresponding pointer is assuned to be of type
*unsi gned.

The very next character is read from the input string
(even if it's a blank). Its corresponding pointer is
assuned to be of type *char.

A string is expected in the input string. Its
corresponding pointer is assumed to be of type *char. It
should point to a space large enough to hold the input
string plus an added null. Characters are read, starting
with the next nonblank character, until the nunber of
characters given in the precision is reached or until a
bl ank, tab, or newine is reached.

(sanme as f)

A floating point nunber is expected in the input string.
Its corresponding pointer is assuned to be of type *float.

return value of this function is the nunber of paraneters

that were matched (read in off the input line) or ECF

DI AGNCSTI CS

SEE ALSO

scanf (), fscanf()

NOTES

A hexadeci mal nunber nmay not be preceded by a Ox.

Any

character wthin a conversion specifier which is not a

| egal conversion specifier option or conversion character will

be

ignored along with the preceding percent sign and any

characters inbetween. Thus there is no way to match a '% on

t he

input line (i.e. witings %6in the control string will not

cause it to try to match a %in the input string).

54.2

NAME
strcat - copy string

SYNOPSI S
i nt strcat (sl, s2)
char *s|, *s2;
DESCRI PTI ON

Strcat appends a copy of the string pointed to by its second
argunent to the end of the string pointed to by its first
ar gunent . It is assuned that the first argunent points to an
area | arge enough to acconodate the resultant string

DI AGNCSTI CS

SEE ALSO
strcmp(), strlen(), strsave()

NOTES

55.1

NAME
strcnp - conpare strings |exicographically

SYNOPSI S
i nt strcnp(sl, s2)
char *s|, *s2;
DESCRI PTI ON

Strcnp | exicographically conpares its first argument with its
second. It returns 1 if the first is greater than the second, 0
if the two are equal, and -1 if the first is less than the
second.

DI AGNCSTI CS

SEE ALSO
strcpy(), strlen(), strsave()

NOTES

56.1

NAME
strcpy - copy string

SYNOPSI S
i nt strcpy(sl, s2)
char *s|, *s2;
DESCRI PTI ON
Strcpy copies the string pointed to by the second argunent to
the area pointed to by the first. It stops after a nul

character has been coni ed.
DI AGNOSTI CS

SEE ALSO
strcmp(), strlen(), strsaveo

NOTES

57.1

NAME
strlen - return string length

SYNOPSI S
i nt strlen(s)
char *S:

DESCRI PTI ON

Strlen returns the length of the string pointed to by the
argurment (not including the termnating null).

DI AGNCSTI CS

SEE ALSO
strcrmp(), stcpy(), strsave()

NOTES

58.1

NAME
strncat - copy string

SYNOPSI S
i nt strncat (sl,s2,n)
char *s|, *s2;
i nt n;

DESCRI PTI ON

Strncat appends a copy of the string pointed to by its second
argument to the end of the string pointed to by its first
ar gunent . Strncat copies at nmpbst the nunber of characters
specified by its third argument. It 1is assuned that the first
ar gurrent points to an area large enough to acconpdate the
resultant string.

DI AGNCSTI CS

SEE ALSO
strcat(), strcnmd(), strlen(), strsave()

NOTES

59.1

NAME
strncnp - conpare strings | exicographically

SYNOPSI S
i nt strncnp(sl, s2,n)
char *s|, *s2;
i nt n;

DESCRI PTI ON
Strncnp | exi cographically conpares its first argument with
its second. It returns 1 if the first is greater than the
second, O if the two are equal, and -1 if the first is less
than the second. Strncnp conpares at nobst the nunber of

characters specified by its third argument; any others are
not consi dered.

DI AGNCSTI CS

SEE ALSO
strcmp(), strcpy(), strlen(), strsave()

NOTES

60.1

NAME
strncpy - copy string

SYNOPSI S
i nt strncpy (sl1,s2,n)
char *s|, *s2;
int n;
DESCRI PTI ON
Strncpy copies the string pointed to by the second argunent to
the area pointed to by the first. It stops after it has copied

the nunber of characters specified by its third argunment or
when a null character has been copi ed.

DI AGNCSTI CS

SEE ALSO
strcmp(), strcpy(), strlen(), strsave()

NOTES

61.1

NAME

strsave - save string in nenory

SYNOPSI S
char *strsave(s)
char *S
DESCRI PTI ON

Strsave attenpts to allocate a space in nenory |arge enough to
hol d the string pointed to by the argument (plus its
termnating null). |If it succeeds strsave copies the string
pointed to by the argunent into the nenory and returns a
pointer to it. If it fails to allocate sufficient nmenory,
strsave returns NULL.

The area used by "strsave" to save the string is obtained by a
call to "alloc" and thus may be returned to the systemby a
call to "free" using the string pointer as an argunent.

DI AGNCSTI CS

SEE ALSO

alloc(), free(), strcnp(), strcpy(), strlen()

NOTES

62.1

NANVE
tol ower - convert to | ower case

SYNOPSI S
char t ol ower (ch)
char ch;

DESCRI PTI ON
Returns its argunent converted to | ower case

DI AGNCSTI CS

SEE ALSO
t oupper ()

NOTES

63.1

NAME
toupper - convert to upper case

SYNOPSI S
char t oupper (ch)
char ch;

DESCRI PTI ON
Returns its argunent converted to upper case

DI AGNCSTI CS

SEE ALSO
t ol ower ()

NOTES

64.1

NAME
ul div unsi gned | ong integer divide

SYNOPSI S
| ong ul di v(opl, op2)
| ong opl , op2

DESCRI PTI ON
U div returns a long (unsigned) integer which represents the
nonfractional result of dividing the first (unsigned) |ong

i nt eger ar gunent by the second (unsigned) |ong integer
ar gunent .
DI AGNCSTI CS
Division by O will return (long) -1.
SEE ALSO
ul mod(), ul mul ()
NOTES
There is actually no type "unsigned long". Udiv operates on

longs as if they were unsigned by ignoring the normal sign
conventi ons.

65.1

NAME
ul mod - unsigned | ong nodul o operation

SYNOPSI S
| ong ul nod (opl, op2)
| ong opl , op2

DESCRI PTI ON
Unod returns a |ong (unsigned) integer which represents the
r emai nder of the result produced by dividing the first

(unsigned) long integer argunent by the second (unsigned) |ong
i nt eger argunent.

DI AGNCSTI CS
When the second argunment is zero (division by 0) the function
returns the first argunent.

SEE ALSO
uldiv(), ulnul()
NOTES
There is actually no type "unsigned long". U nod operates on

longs as if they were wunsigned by ignoring the nornmal sign
conventi ons.

66. 1

NAME
ulmul - unsigned long multiply

SYNOPSI S
| ong ulmul (opl, op2)
| ong opl , op2

DESCRI PTI ON
Unmul returns a |long (unsigned) integer which represents the
result of mltiplying the first (unsigned) |ong integer

argunent by the second (unsigned) |ong integer argunent.

DI AGNCSTI CS
SEE ALSO
uldiv(), ulnod
NOTES
There is actually no type "unsigned long". U nul operates on

longs as if they were wunsigned by ignoring the nornmal sign
conventi ons.

67.1

NAME

_unext - unextend fl oat
SYNOPSI S
fl oat unext (ef)

struct extflt

char si gn;

i nt exp;

| ong mant i ssa
} ref;

DESCRI PTI ON
_unext returns the float which is represented by the extended
floating point nunber contained in the structure pointed to by
the argunent. The first elenent of the structure is assunmed to
contain the sign bit of the nunber, the second el enent shoul d
contain the unbi ased exponent, and the third the mantissa

DI AGNOSTI CS

SEE ALSO
_extend()

NOTES

68.1

NAME

ungetc - push character back on input stream

SYNOPSI S
#i ncl ude "stdi o. h"
i nt ungetc (c, fp)
FI LE *f p;
i nt c;
DESCRI PTI ON

Ungetc attenpts to push a character back on the input stream so
that it will be the next one retrieved. At nost one character
may be pushed back i nbetween calls to getc. The first argunent
is the character to be pushed the second is a pointer to the
file into which the character is to be pushed. The file pointer
nust have been previously returned froman fopen call unless it
is STDIN.

DI AGNCSTI CS

Ungetc returns ERROR (-1) if it could not push the character

SEE ALSO

getc()

NOTES

69.1

NAME

ungetchar - push character back on
SYNOPSI S

#i ncl ude "stdio. h"

i nt unget char (c)

char C;
DESCRI PTI ON

standard i nnut stream

Ungetchar attenpts to push a character back on the standard
input streamso that it will be the next one retrieved. At nost
one character may be pushed back

The argunent is the character
equi val ent to ungetc (c, STDIN)

DI AGNCSTI CS
Ungetchar returns ERROR (-1)
character.

SEE ALSO

NOTES

to

i f

70.

i nbetween calls to getchar.

1

pushed. This call is

could not push the

NANVE
unlink - delete file

SYNOPSI S
i nt unl i nk(name)
char *nane;
DESCRI PTI ON

Unlink deletes the file whose name is contained in the string
pointed to by its argunment. Under sone operating systens unlink
sinply decreases a link count to the file and deletes the file
if the link count reaches zero as a result.

DI AGNCSTI CS
Unlink returns ERROR if the file could not be cvel eted

SEE ALSO

NOTES
Under the Flex and 0S9 operating systems wunlink sinply has the
effect of deleting the file. Under nore Unix |ike operating
systens such as Uni FLEX wunlink decreases the |link count on the
file. Such an operating systemw || delete any file whose |ink

count decreases to zero. There is a conpanion library routine
link(), which increases the link count on a file for those
operating systens which support it.

71.1

72.

1

ADDENDUM TO THE | NTROL- C USER MANUAL

LI NKER AND LOADER REFERENCE MANUAL

-b Option
Two forns of the' "-b" option described on page L.1.6 of the

Li nker And Loader Reference Manual are now avail abl e:

-b -or- - b=<Pat hnar ne>
The first form above, "-b", prevents the Standard Library,
libc.R, from being searched by the Linker. The second form
"- b=<Pat hnane>", defines <pathnane> as being a non-standard pl ace
in which to find the Standard Library, libc.R
-i_Option
A "-i" option has been added for the Linker. Wen. a -i is
specified on the link comand line, this option specifier wll
force |l oading of all nodules on the command |ine
-1 _Option
Two forns of the "-1" option described on page L.1.8. of the

Li nker And Loader Reference Manual are now avail abl e:

SI[s][x][u][=<file>] - or - SHE[s][x][ul[=<file>]
The first formabove, where a single leading "1" is specified
causes a linker listing to be produced exactly as described on
page L.1.8 of the User Manual. The second form where a double
leading "I" is wused, instead causes a |loader listing to be
pr oduced. That is, an option specification beginning with "-1"
will be ignored by the Ilinker itself and passed intact to the

| oader to cause a |l oader listing to be generated.

-r_option

A "-r" option has been added for the Linker. The -r option
specifier causes the .RL output file generated by the Linker to
be saved during an automatic |ink-and-load sequence. Normal |y

(when the -r option is not speci fied), when the Linker
automatically calls the Loader, the Linker passes the Loader a
"-z" option specifier which causes the Loader to delete its input
file (ie the Linker's .RL output file) when the Loader has
finished withit. Specifying the -r option on the |link command
line inhibits the Linker from passing the -z specifier to the
Loader, thus causing the internediate RL Linker output file to
be ret ai ned.

STANDARD LI BRARY REFERENCE MANUAL (UC6809 Library Only)

The Standard Library Reference Manual erroneously describes two
routines that do not exist in the supplied Standard Library:
rand - Return random nunber
srand - Set seed for random nunber generator
Therefore, please delete/ignore the descriptions for these two
routines.

APPENDI X A
FC6809 STANDARD LI BRARY

NON- ZERO CLASS LI BRARY RQUTI NES

As discussed in the Conpiler Reference manual and Linker Reference
manual , all relocatable nodules (including those contained in the
Standard Library) have a special identifying attribute called a
"class" specifier, which is a nunber in the range 0 through 255. At
link tinme, the Linker uses a nodule's class nunber to differentiate
between different versions of identically naned nodules that may
possi bly co-exist within the sane library.

In the case of the FC6809 Standard Library, nmost of the function

nodul es supplied in the Ilibrary have a preassigned nodure class
specifier of "O' (zero). In fact, each of the various runtine
support functions is furnished and available for use as a class 0
type of nmodule. However, the library also includes "alternate"

versions of sone runtine functions. Were such alternate support
routines exist, they have been given the sane filenane as the
"standard" version of the routine, but have been assi gned non-zero
cl ass nunbers.

In all cases, the class 0 version of a given library routine wll
al ways provide the full runtine support features that have been
described for that routine in this reference manual. Any non-zero
classes of library routines, by conparison, provide a nodified (and
typically abbreviated) Ilevel of support for the given runtine
function, usually resulting in snmaller runtine overhead in the fina
pr ogr am

Four non-zero class categories of library functions are included in
the FC6809 Standard Library; class 5, class 6, class 7, and cl ass 8.

Classes 5 and 6 are associated with selection of nodified versions
of the output formatting routines, such as printf, fprintf, and
sprintf; classes 7 and 8 select mpdified versions of the input
formatting routines, such as scanf, fscanf, and sscanf. Wereas the
class 0 versions of these respective routines provide full support
for longs, integers, and floating point nunbers, the non-zero class
versions differ as follows:

Class 5 - Qutput formatting routines will support only integers.
Class 6 - Qutput formatting routines will support only integers
and | ongs.
Class 7 - Input formatting routines will support only integers.
Class 8 - Input formatting routines wll support only integers
and | ongs.

APPENDI X D
| NSTALLATI ON OF THE FC6809 | NTROL- C COVPI LER

This section describes the installation of Introl-C on the Flex
operating system

The FC6809 Introl-C Conpiler is shipped on standard 8 inch or 5 inch
floppy disk format. Verify that the disk is indeed intended for the
Fl ex operating system and also that the disk format is what you
expect by reading the |abel on the distribution diskette envel ope.
Note that the disk shipped to you is not bootable and thus cannot be
used to start your Flex system

Before it can be used, the Conpiler and its associated prograns nust
be copied fromthe distribution disk to the systemdrive. Unless
specified otherwi se, the programto be conpiled is assumed to be on
the work drive.

Notice that the "stdio.h", "flex.h", and "setjnp.h" files are NOT
capitalized. Wen you copy these files, be sure that their nanmes are
in |ower case. On many FLEX systens file nanes are automatically
converted to upper case even when typed in | ower case. Many systens
already have a wutility to defeat this "feature" but, if not, the
distribution disk includes a utivity called "CASE' which, when run,
prevents this automatic conversion. The CASE program toggl es between
"upper/l ower case' and 'upper case only' each time it is runso if
it is run an even nunber of times the system wll again convert
| oner case to upper.

You nmay also wish to take note of the other files you find on your
distribution disk. They include source code exanples of many of the
standard library routines and perhaps sone useful or interesting
routines. See your FLEX System Users Manual for details on making
copies of files.

INTROL-C is a registered trademark of Introl Corp
Flex is a trademark of Technical Systens Consultants, Inc.

oD. 1

